11,568 research outputs found

    Pulse-Echo Harmonic Generation Measurements for Non-destructive Evaluation

    Get PDF

    The final two redshifts for radio sources from the equatorial BRL sample

    Full text link
    Best, Rottgering and Lehnert (1999, 2000a) defined a new sample of powerful radio sources from the Molonglo Reference Catalogue, for which redshifts were compiled or measured for 177 of the 178 objects. For the final object, MRC1059-010 (3C249), the host galaxy is here identified using near-infrared imaging, and the redshift is determined from VLT spectroscopy. For one other object in the sample, MRC0320+053 (4C05.14), the literature redshift has been questioned: new spectroscopic observations of this object are presented, deriving a corrected redshift. With these two results, the spectroscopic completeness of this sample is now 100%. New redshifts are also presented for PKS0742+10 from the Wall & Peacock 2.7 GHz catalogue, and PKS1336+003 from the Parkes Selected Regions. PKS0742+10 shows a strong neutral hydrogen absorption feature in its Lyman-alpha emission profile.Comment: 4 pages. LaTeX. Accepted for publication in MNRA

    HST, radio and infrared observations of 28 3CR radio galaxies at redshift z ~ 1: I. The observations

    Get PDF
    Hubble Space Telescope images are presented of a sample of 28 3CR radio galaxies with redshifts in the range 0.6 < z < 1.8, together with maps at comparable angular resolution of their radio structure, taken using the Very Large Array. Infrared images of the fields, taken with the United Kingdom InfraRed Telescope, are also presented. The optical images display a spectacular range of structures. Many of the galaxies show highly elongated optical emission aligned along the directions of the radio axes, but this is not a universal effect; a small number of sources are either symmetrical or misaligned. Amongst those sources which do show an alignment effect, the morphology of the optical emission varies greatly, from a single bright elongated emission region to strings of optical knots stretching from one radio hotspot to the other. The infrared images display much less complexity. Although their significantly lower angular resolution would wash out some of the smaller structures seen in the HST images, it is clear that these galaxies are less aligned at infrared wavelengths than in the optical. In this paper, we discuss the galaxies individually, but defer a statistical analysis of the multi-waveband properties of the complete sample of sources to later papers in this series.Comment: 39 pages including 52 figures, LaTeX. Accepted for publication in MNRA

    The triggering probability of radio-loud AGN: A comparison of high and low excitation radio galaxies in hosts of different colors

    Get PDF
    Low luminosity radio-loud active galactic nuclei (AGN) are generally found in massive red elliptical galaxies, where they are thought to be powered through gas accretion from their surrounding hot halos in a radiatively inefficient manner. These AGN are often referred to as "low-excitation" radio galaxies (LERGs). When radio-loud AGN are found in galaxies with a young stellar population and active star formation, they are usually high-power radiatively-efficient radio AGN ("high-excitation", HERG). Using a sample of low-redshift radio galaxies identified within the Sloan Digital Sky Survey (SDSS), we determine the fraction of galaxies that host a radio-loud AGN, fRLf_{RL}, as a function of host galaxy stellar mass, MM_*, star formation rate, color (defined by the 4000 \angstrom break strength), radio luminosity and excitation state (HERG/LERG). We find the following: 1. LERGs are predominantly found in red galaxies. 2. The radio-loud AGN fraction of LERGs hosted by galaxies of any color follows a fRLLEM2.5f^{LE}_{RL} \propto M^{2.5}_* power law. 3. The fraction of red galaxies hosting a LERG decreases strongly for increasing radio luminosity. For massive blue galaxies this is not the case. 4. The fraction of green galaxies hosting a LERG is lower than that of either red or blue galaxies, at all radio luminosities. 5. The radio-loud AGN fraction of HERGs hosted by galaxies of any color follows a fRLHEM1.5f^{HE}_{RL} \propto M^{1.5}_* power law. 6. HERGs have a strong preference to be hosted by green or blue galaxies. 7. The fraction of galaxies hosting a HERG shows only a weak dependence on radio luminosity cut. 8. For both HERGs and LERGs, the hosting probability of blue galaxies shows a strong dependence on star formation rate. This is not observed in galaxies of a different color.[abridged]Comment: 7 pages, 6 figure

    A short survey on nonlinear models of the classic Costas loop: rigorous derivation and limitations of the classic analysis

    Full text link
    Rigorous nonlinear analysis of the physical model of Costas loop --- a classic phase-locked loop (PLL) based circuit for carrier recovery, is a challenging task. Thus for its analysis, simplified mathematical models and numerical simulation are widely used. In this work a short survey on nonlinear models of the BPSK Costas loop, used for pre-design and post-design analysis, is presented. Their rigorous derivation and limitations of classic analysis are discussed. It is shown that the use of simplified mathematical models, and the application of non rigorous methods of analysis (e.g., simulation and linearization) may lead to wrong conclusions concerning the performance of the Costas loop physical model.Comment: Accepted to American Control Conference (ACC) 2015 (Chicago, USA
    corecore